FERNANDO ALEXANDRE, PEDRO BAÇÃO, JOÃO CEREJEIRA & MIGUEL PORTELA

Employment, exchange rates and labour market rigidity

ESTUDOS DO GEMF
N.º 3 2010

PUBLICAÇÃO CO-FINANCIADA PELA FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA

Impresso na Secção de Textos da FEUC COIMBRA 2010
Employment, exchange rates and labour market rigidity

Fernando Alexandre† Pedro Bação‡ João Cerejeira§ Miguel Portela¶

Abstract

There is increasing evidence that the interaction between shocks and labour market institutions is crucial to understanding the dynamics of employment. In this paper, we show that the inclusion of labour adjustment costs in a trade model affects the impact of exchange rate movements on employment. We also explore how labour market rigidities interact with the degree of exposure to international competition and with the technology level. Our model-based predictions are consistent with estimates obtained using panel data for 23 OECD countries. Namely, our estimates suggest that employment in low-technology sectors that have a very high degree of openness to trade and are located in countries with more flexible labour markets are more sensitive to exchange rate changes. Our model and estimates therefore provide additional evidence on the importance of interacting external shocks and labour market institutions.

Keywords: exchange rates, international trade, job flows, employment protection.

JEL-codes: J23, F16, F41

1 Introduction

Globalization has increased the exposure of open economies to external shocks. The almost instantaneous collapse of international trade in most developed and developing
countries in the last quarter of 2008, caused by the international financial crisis, is an instance of how fast the transmission of shocks in the world economy can be. But the world economy has been afflicted by global shocks before. In the 1970s and in the 1980s, when the industrialized countries were hit by oil shocks and by the turbulence in exchange rate markets, following the demise of Bretton Woods, policymakers were vocal about the impact of external shocks on competitiveness. The steady decline in manufacturing employment and the increase in unskilled workers’ unemployment contributed to keep this issue in the headlines ever since. However, policymakers and scholars — see, e.g., Nickell (1997), Nickell et al. (2002), Blanchard (1999), Blanchard and Wolfers (2000) and Blanchard and Portugal (2001) — have come to realize that the economic impact of these and other shocks depends, among other factors, on labour market institutions, a realization that has led many to urge for the implementation of labour reforms.1

The aim of this paper is thus to investigate, both theoretically and empirically, the impact of exchange rate shocks on employment and the relation between this impact and labour market institutions. Our approach brings together two strands of the literature on international trade. One is composed of the studies, mainly empirical, that find a significant effect, positively related to the degree of openness to trade, of exchange rate movements on employment (e.g., Branson and Love, 1988, Revenga, 1992, Gourinchas, 1999, Campa and Goldberg, 2001, and Klein et al., 2003). The other is the new literature on international trade that builds on the seminal paper by Melitz (2003) and highlights the relationship between international trade and productivity. A recent example of this literature is Berman et al. (2009), who add distribution costs to the Melitz model. By doing that, they are able to show that heterogeneity in productivity across firms produces differentiated price and output responses to exchange rate depreciations. Using the same framework, Alexandre et al. (2009a) go one step further and show how the degree of openness to trade and the level of productivity interact to determine the impact of exchange rate movements on employment.

On the theoretical front, the present text provides a link between these international trade models and the analysis of labour market institutions, and shows how labour market rigidities, alongside openness and productivity, mediate the impact of exchange rates movements on employment. The development of our theory rests on the introduction of labour market frictions, in the form of hiring and firing costs, in a trade model with heterogeneous firms and distribution costs of the type developed in Berman et al. (2009). Our results suggest that higher labour adjustment costs decrease the employment ex-

1Calmfors and Driffl (1988) were among the first to discuss the implications of different labour market institutions for macroeconomic performance, namely the relationship between employment and the bargaining structure. Driffl (2006) updates that study and surveys the recent literature on labour market institutions and macroeconomic performance.
change rate elasticity, i.e., an increase in labour adjustment costs attenuates the impact of exchange rate movements on labour demand. In our model, this result is robust to different degrees of openness to trade, productivity and exchange rate persistence.

The themes of labour market institutions and international trade have already appeared together in the new trade literature following Melitz (2003). For example, Fellenmayr et al. (2008) added wage bargaining and search frictions to the Melitz model. Even more recently, Helpman and Itskhoki (2010) presented a two-sector version of the Melitz model that also includes wage bargaining and search frictions. However, the focus of these papers is on the comparative statics analysis of the economic implications of trade liberalization. In fact, the exchange rate is not even mentioned in such papers. We aim at filling part of this theory gap.

On the empirical side, we estimate the response of employment to exchange rate movements. We take into account the theoretical results and interact the exchange rate with measures of openness, productivity and labour adjustment costs. Our proxy for labour adjustment costs is the Employment Protection Legislation (EPL) index computed by OECD, which has previously been shown (see, among other, Cingano et al., 2009) to be related to labour adjustment costs. We use sector-level data from 23 OECD countries covering the years 1988-2006. The results seem to corroborate the predictions of the theoretical model: very open sectors, using a lower level of technology and facing less labour rigidity are more sensitive to exchange rate movements.

The remainder of the paper is organized as follows. In section 2 we develop a trade model with labour market rigidities that take the form of labour adjustment costs. Section 3 sets the stage for our empirical test of the model’s predictions. There we describe the main trends and patterns in manufacturing employment, exchange rates and employment legislation protection in OECD countries since the late 1980s. Section 4 presents econometric evidence on the effect of exchange rate changes on employment, in a panel of OECD countries, and its interaction with openness, technology and labour market rigidity. Section 5 concludes.

2 A trade model with labour adjustment costs

It has been shown (e.g., Bertola, 1990, 1992) that labour adjustment costs affect firms’ optimal decisions, preempt an efficient allocation of resources and, in particular (Bertola, 1992, and Hopenhayn and Rogerson, 1993), that labour adjustment costs imply lower job flows.\(^2\) In this section we show that in an international trade model one manifestation

\(^2\)These theoretical predictions have found empirical support in several studies – see, e.g., Haltiwanger et al. (2006) and Gómez-Salvador et al. (2004).
of this sort of effect is that higher labour adjustment costs reduce the size of the labour
demand elasticity with respect to the exchange rate. Our presentation follows Melitz
(2003) and Berman et al. (2009), but we introduce labour adjustment costs into the
framework.

We start by describing the behaviour of the demand for the good that is exported.
To simplify, we assume that the exporting firm only sells in market \(i \). An alternative
interpretation is that the revenues and costs associated with exporting to country \(i \) are
separable from the rest of the firm’s activities. We also assume, as is common in the
related literature – namely, Melitz (2003) and Berman et al. (2009) – and, more generally,
in modern macroeconomics, that the firm is a monopolistic competitor. Therefore, the
price and quantity the firm will set will depend on the size of a finite price-elasticity
of demand for the good that the firm produces. In our interpretation of the model’s
implications, this elasticity will also represent the degree of openness of country \(i \). The
motivation for this interpretation is that, in a more open market, competition from
similar goods produced by other exporters to market \(i \) will be more intense, i.e., the
price-elasticity will be higher. Another paper that also makes this assumption explicitly
is Klein et al. (2003).

2.1 Demand

We assume that the representative consumer in country \(i \) maximizes a standard inter-
temporal utility function:

\[
U = E_0 \sum_{t=0}^{\infty} \theta^t u(C_{it})
\]

(1)

where \(\theta \) is the discount factor.

The period utility flow is given by the Dixit-Stiglitz functional:

\[
u(C_{it}) = C_{it} = \left[\int_{\varphi} x_{it}(\varphi)^{1-\frac{1}{\sigma}} d\varphi \right]^{\frac{1}{1-\frac{1}{\sigma}}}
\]

(2)

where \(\sigma \) is the elasticity of substitution between any two varieties (besides being the
symmetric of the own price-elasticity) and \(x_{it}(\varphi) \) is the consumption of variety \(\varphi \), i.e., \(\varphi \) indexes, over the set \(\Phi \), the goods available to the consumer. Below, we will also use \(\varphi \) to represent the level of productivity of the firm that produces variety \(\varphi \). Given the form
of the utility function, the demand for variety \(\varphi \) will be given by:

\[
x_{it}(\varphi) = C_{it} \left[\frac{p_{it}(\varphi)}{P_{it}} \right]^{-\sigma}
\]

(3)
For our purposes, we do not need to detail any more the behaviour of the representative consumer in country i. We will assume C_{ii} to be an exogenous element in the firm’s problem, to which we now turn.

2.2 Exporting firm

As we said before, the firm that produces variety φ, and exports it to country i, is a monopolistic competitor in country i, the sole destination of its output. The price that it charges in country i’s currency ($p_{it}(\varphi)$) is given by:

$$p_{it}(\varphi) = \frac{p_t}{\varepsilon_{it}} + \eta_i w_{it}$$

where p_t is the period t price of the good in the domestic currency, ε_{it} is the period t price of a foreign unit of currency in units of the domestic currency, η_i are the distribution costs in country i, measured in units of country i’s labour, and w_{it} is the wage in country i, in period t. The introduction of these distribution costs is the main innovation in Berman et al. (2009) relatively to the trade model proposed by Melitz (2003). The presence of distribution costs makes the elasticities of demand for variety φ with respect to the price (p_t) and with respect to the exchange rate functions of σ and of other parameters in the model, as we shall see below.

As in the related literature, the production function is assumed to be linear in the labour input:

$$y_t(\varphi) = \varphi L_t$$

where φ, as mentioned above, is a measure of productivity. The production costs include labour costs (given the wage in the firm’s country, w_t), fixed costs and labour adjustment costs:

$$c_t(\varphi) = w_t L_t + F_t(\varphi) + w_t A(\Delta L_t)$$

The focus of this paper is on labour adjustment costs, $w_t A(\Delta L_t)$. For $A(\Delta L_t)$ — labour adjustment costs measured in units of labour — we adopt the formulation proposed by Pfann and Verspagen (1989):

$$A(\Delta L_t) = -1 + \exp(\beta \Delta L_t) - \beta \Delta L_t + \frac{\gamma}{2} (\Delta L_t)^2$$

In this formulation, when $\beta \neq 0$, labour adjustment costs are asymmetric: if $\beta > 0$, then hiring costs are higher than firing costs; if $\beta < 0$, then the opposite is true. The other parameter, γ, reflects the symmetric component of the costs of adjusting labour.

The firm chooses how much to produce and sets the price so as to maximize its present
value:
\[
\max E_0 \sum_{t=0}^{\infty} \tilde{\delta}_t [p_t y_t(\varphi) - c_t(\varphi)]
\] \hspace{1cm} (8)

where \(\tilde{\delta}_t \) is the current period discount factor for the cash flow in period \(t \). To simplify the derivations below, we shall assume that \(\tilde{\delta}_t = \delta' \).

Given our setup, the optimal choices for price and quantity are given by:
\[
p_t = \frac{\sigma}{\sigma - 1} \left(1 + \frac{q_t \eta_i \varphi}{\sigma} + B_t \right) \frac{w_t}{\varphi}
\] \hspace{1cm} (9)

and
\[
y_t = C_{it} P_i w_t^{-\sigma} \left(\frac{\sigma - 1}{\sigma} \right)^{\sigma} \left(\frac{1 + B_t}{q_t \varphi} + \eta_i \right)^{-\sigma}
\] \hspace{1cm} (10)

where
\[
q_{it} = \frac{\varepsilon_{it} w_{it}}{w_t}
\] \hspace{1cm} (11)

denotes the real exchange rate and \(B_t \) includes current and future marginal costs of adjusting labour:
\[
B_t = M_t - \delta E_t \left[\frac{w_{t+1}}{w_t} M_{t+1} \right]
\] \hspace{1cm} (12)

with
\[
M_t = \beta [\exp(\beta \Delta L_t) - 1] + \gamma \Delta L_t
\] \hspace{1cm} (13)

The non-linear nature of the model and the fact that \(B_t \) includes current and future marginal costs of adjusting labour make the analysis of the relation between firm behaviour and exchange rate movements more complex. To proceed we resort to log-linearization of equation (10).

2.3 Log-linearization

We begin by writing (10) as:
\[
y_t = X_t \left(\frac{1 + B_t}{q_t \varphi} + \eta_i \right)^{-\sigma}
\] \hspace{1cm} (14)
i.e., we collect in X_t the exogenous variables that are not directly related to the focus of our study.\(^3\) We then log-linearize the resulting equation, obtaining:

$$
\dot{y}_t \approx \dot{X}_t + \frac{\sigma}{zq} \dot{q}_{it} - \frac{\sigma}{zq} \frac{(1 + \delta)y}{\varphi} (\beta^2 + \gamma) \dot{y}_t \\
+ \frac{\sigma}{zq} \frac{y}{\varphi} (\beta^2 + \gamma) \dot{y}_{t-1} + \frac{\sigma}{zq} \frac{\delta y}{\varphi} (\beta^2 + \gamma) E_t \dot{y}_{t+1}
$$

(15)

where the hats denote log-deviations from the steady-state. Note that the parameters related to labour adjustment costs appear together in the factor $\beta^2 + \gamma$. Therefore, in the log-linearized version of the model, one of them is irrelevant: we chose to set $\beta = 0$.

We assume that the exogenous variables (\dot{X}_t and \dot{q}_{it}) follow first-order autoregressive processes:

$$
\dot{X}_t = \rho_X \dot{X}_{t-1} + \epsilon^X_t
$$

(16)

$$
\dot{q}_{it} = \rho_q \dot{q}_{it-1} + \epsilon^q_t
$$

(17)

With these assumptions, the solution of the model is of the form:

$$
\dot{y}_t = \alpha_0 \dot{X}_t + \alpha_1 \dot{q}_{it} + \alpha_3 \dot{y}_{t-1}
$$

(18)

The parameter that we are interested in is α_1, which measures the sensitivity of output and labour demand to exchange rate movements. It is given by:

$$
\alpha_1 = \frac{\alpha_3}{1 + \alpha_3 \frac{\gamma y (1 + \delta)}{\varphi} \left[1 - \kappa(\alpha_2 + \rho_q) \right]}
$$

(19)

where

$$
\alpha_3 = \frac{\sigma}{1 + \eta \varphi q}
$$

(20)

$$
\kappa = \frac{\alpha_3 \frac{\delta \gamma y}{\varphi}}{1 + \alpha_3 \frac{(1 + \delta) \gamma y}{\varphi}}
$$

(21)

$$
\alpha_2 = \frac{1 - \sqrt{1 - 4\kappa^2 \delta^{-1}}}{2\kappa}
$$

(22)

Though not immediately visible, these formulas lead to four conclusions that interest us:

\(^3\)One simplification we shall make is that the growth rate of wages is zero, which allows us to ignore the ratio w_{t+1}/w_t in equation (12) and to delete a constant slightly different from 1 multiplying γ in the results presented below. It also saves us from having to assume a stochastic process for wages, which would, in any case, end up merged with the corresponding process for X_t.

7
1. an increase in labour adjustment costs (parameters β and γ) reduces the reaction of labour demand to exchange rate movements;

2. an increase in openness (σ) increases the reaction of labour demand to exchange rate movements;

3. an increase in productivity (φ) reduces the reaction of labour demand to exchange rate movements;

4. an increase in exchange rate persistence (ρ_q) increases the reaction of labour demand to exchange rate movements.

These conclusions may be gleaned from figure 1.\footnote{Figures with additional calibrations are shown in the Appendix, Figures 7, 8 and 9. The plots are organized in three figures in order to facilitate the evaluation of the effect of labour adjustment costs} In these figures we plot the value
of \(\alpha_1 \) for different parameterizations and using different variables in the axis so that the robustness of the patterns enumerated above may be verified. The model parameters were calibrated assuming \(\delta = 0.96, \beta = 0 \) and \(s = 0.3 \), as do Berman et al. (2009) in one version of their computations. \(s \) represents the share of distribution costs in the good’s price. This share has been estimated to represent between 40% and 60% of goods’ prices — see, e.g., Burstein et al. (2003) and Campa and Goldberg (2008). Setting \(s = 0.5 \) would not change the plots, only the scale: increasing the share of distribution costs would reduce the size of the elasticity \(\alpha_1 \).

Our model suggests that empirical analyses of the reaction of employment to exchange rate movements should find that low-productivity firms, very open to trade and less affected by labour market rigidities should be more sensitive to the exchange rate. In the empirical section of this paper we will use sector-level data. One of the drawbacks of using this dataset is that it does not allow us to distinguish between firms that do and do not export. However, a similar model for non-exporting firms would also lead to the conclusion that the size of the impact of exchange rate movements on labour demand declines when labour adjustment costs increase. Therefore, we expect that the same will happen at the sector level. Note that we do not address the issue of firm entry and exit (the "extensive margin"). In Berman et al. (2009) fixed costs \(- F_t(\varphi) \) in Equation (6), assumed to depend on the productivity level – are viewed as a payment that allows the firm to export to country \(i \). Thus, in that setup fixed costs are important for the study of firms’ entry and exit decisions concerning the destination market. Berman et al. show that at the aggregate level these costs will influence the extensive margin elasticity of exports with respect to the exchange rate. This is estimated to represent around 20% of the elasticity of French exports with respect to the exchange rate. We therefore believe that our model should be able to explain the bulk of the effect of exchange rate changes on employment.

3 Labour market institutions, employment and exchange rates

In this section, we describe very briefly the main trends in manufacturing employment per technology level (3.1), aggregate and sectoral exchange rates and openness (3.2) and employment protection in OECD countries (3.3). We do this to motivate our empirical analysis that aims at evaluating how employment protection has affected the impact of \((\gamma) \) on the labour demand elasticity with respect to the exchange rate. In each figure the patterns are similar regardless of the calibration. The plots reveal that adjustment costs have a larger effect on the value of \(\alpha_1 \) when the persistence of exchange rate shocks is low and when productivity is high.
exchange rate movements on employment.

3.1 Declining trends in manufacturing employment

Since the beginning of the 1980s there has been a very significant decrease in manufacturing employment. In our empirical analysis we use data for 22 manufacturing sectors and 23 OECD countries (see Tables 8 and 7 in the Appendix for the description of the sectors and countries, respectively). Between 1988 and 2006, manufacturing employment in OECD countries decreased from around 20% to 15% of total employment. However, trends in manufacturing employment have been very diverse across countries and sectors. The decrease in manufacturing employment was more pronounced in the US and in the UK, where it decreased, respectively, from 15.5% to 10.1% and from 18.8% to 10.4% – see Figure 2. On the other hand, manufacturing employment in countries like Italy and Germany decreased only slightly, remaining close to 20% of total employment in 2007.

When we look at the evolution of manufacturing employment by technology level, using the OECD technology level classification, we conclude that low-technology sectors have been the most affected by the downward trend in manufacturing employment: their share in total manufacturing employment declined from 46.3% in 1988 to 39.7% in 2006. The OECD technology classification ranks industries according to indicators of technology intensity based on R&D expenditures (OECD, 2005). Therefore, we use the OECD
technology classification as a proxy for the productivity parameter in the production function of our theoretical model, \(\varphi \), which can be understood as a total productivity factor (or a Solow residual). In fact, a simple OLS regression of labour productivity, measured as sectoral value added per employee, on OECD’s technology classes and capital per employee, shows that high-technology sectors are more productive than low technology sectors. Given that data on value added and on the stock of capital are available just for a small sample of countries and years, we develop our analysis using the OECD’s technology classification.\(^{5}\)

3.2 Exchange rates and openness

In the 1990s, exchange rates became less volatile than they had been in the 1970s and in the first half of the 1980s. As a result, exchange rate fluctuations in the 1990s caused only moderate and intermittent concerns. However, the first decade of the 21st century has revived concerns about exchange rate volatility, its effects on global trade and the need for international policy coordination. In the first place, the rampant US trade deficit and China’s surplus raised doubts on the exchange rate between the dollar and the renminbi. US policymakers have been accusing Chinese authorities of managing the exchange rate policy to keep the renminbi undervalued to boost China’s exports. The devaluation of the dollar since 2002 against its main trade partners (see Figure 3) has also raised concerns about its future role in the international monetary system. Finally, significant swings in exchange rates followed the international financial crisis, either because high levels of debt raised concerns about the value of certain currencies (e.g., Poland, Hungary and Iceland) or because governments sought to use the exchange rate to stimulate the economy through exports (e.g., UK and US).

In Figures 3 and 4, we can observe the evolution of aggregate and sector-specific effective real exchange rates for a group of countries included in our empirical analysis. These exchange rates were computed as trade-weighted rates that include information to take into account sectoral third-party competition, a procedure described in Alexandre et al. (2009b), following Turner and Van’t dack (1993).\(^{6}\)

Figure 5 presents the evolution of openness in the same set of countries, measured as the ratio of exports plus imports over gross output plus exports and imports. It shows

\[^{5}\text{Running the following regression } \log(\text{productivity}) = \beta_0 + \beta_1 MHT + \beta_2 MLT + \beta_3 LT + \beta_4 \log(\text{capital}) + \theta_i + \gamma_i + \varepsilon, \text{ we conclude that high-technology sectors are the ones with highest productivity and that productivity decreases for lower levels of technology (MHT: medium-high tech; MLT: medium-low tech; LT: low tech). Furthermore, the estimated coefficient on capital is about 0.41 with a standard error of 0.01. This implies that higher levels of capital are associated with higher levels of productivity. The } R^2 \text{ is 0.78.} \]

\[^{6}\text{See the Appendix for details.} \]
Figure 3: Aggregate Real Effective Exchange Rates

Figure 4: Sectoral Real Effective Exchange Rates
that between 1988 and 2006 the openness to trade has increased steadily.

3.3 Employment protection legislation

A rapidly changing environment due to increasing competition from emerging countries and to the acceleration in the pace of technological change has urged industrialized countries to introduce more flexibility in labour markets – these concerns have been specially strong in European countries. The European Commission, in particular, has recommended on several instances the reform of labour markets, namely of the excessively restrictive employment legislation, as a necessary condition for making the European Union the world’s most competitive economy as stated in the Lisbon Strategy (see, for example, European Commission, 2003).

One feature of labour market rigidities is employment protection, that is, the legislation and collective bargaining agreements that regulate the hiring and firing – for a survey of the literature on employment protection see, for example, Addison and Teixeira (2003). This employment protection represents an additional labour cost for employers of the type that the model described in the previous section attempts to capture in the term $A(\Delta L_t)$. In our empirical analysis, we use the OECD Employment Protection Legislation (EPL) index which allow us to compare the labour market rigidities over time and across the 23 OECD countries. The OECD measure of employment protection, EPL, gathers three different types of indicators: indicators on the protection of regular workers...
against individual dismissal; indicators of specific requirements for collective dismissals; and indicators of the regulation of temporary forms of employment (OECD, 1999 and 2004).

As shown in Figure 6, in the last 20 years there was a downward trend in the OECD EPL index: it decreased from 2.49, in 1988, to 1.91, in 2006, indicating an easing of hiring and/or firing conditions. France and the UK are among the exceptions; in these countries the EPL index has increased slightly in the period under analysis. From the analysis of Figure 6, we can also see that countries with more stringent labour markets regulations, namely Germany and Denmark, converged to lower EPL index levels, from 3.17 and 2.4 in 1988 to 2.12 and 1.5 in 2006, respectively. However, the EPL index is still very diverse across countries, and despite the changes mentioned most countries have kept their relative positions. The US, the UK and Canada have the lowest index. The EPL index for the US has remained unchanged throughout the whole period.

7According to OECD (2004) the regulation of temporary employment is crucial to understanding differences in EPL across countries.
4 Empirical evidence

4.1 Estimation strategy

As shown in section 2, our theoretical model implies that the sensitivity of employment to exchange rate changes should increase with the degree of openness and decrease with labour adjustment costs and productivity. In order to test these implications we use the following empirical specification:

$$
\Delta y_{jct} = \beta_0 + \beta_1 \Delta \text{ExRate}_{jct-1} + \beta_2 \text{Open}_{jct-1} + \beta_3 \text{EPL}_{c,t-1}
+ \beta_4 \Delta \text{ExRate}_{jct-1} \times \text{Open}_{jct-1} + \beta_5 \Delta \text{ExRate}_{jct-1} \times \text{EPL}_{c,t-1}
+ \beta_6 \Delta \text{ShareChina}_{jct-1} + \beta_7 \Delta \text{ShareChinaW}_{jct-1} + \beta_8 \Delta \text{ULC}_{c,t-1}
+ \beta_9 \Delta \text{GDP}_{c,t-1} + \beta_{10} \Delta \text{IntRate}_{c,t-1} + \lambda_t + u_{jct},
$$

(23)

where Δ is the first-difference operator, y_{jct} is log employment, measured as total workers, in sector j and country c in year t, and ExRate_{jct-1} is the lagged sectoral real effective exchange rate smoothed by the Hodrick-Prescott filter\(^8\), which filters out the transitory component of the exchange rate.\(^9\) Open_{jct-1} measures the openness degree and $\text{EPL}_{c,t-1}$ stands for the OECD’s Employment Protection Legislation index.

We include as additional control regressors the share of China in country c imports of goods belonging to sector j. Similarly, exporters from country c to another OECD country i face competition from Chinese exporters to country i. This type of competition is proxied by the $\text{Share_ChinaW}_{jct-1}$ variable, which is an weighted average of the share of Chinese imports in OECD countries, where weights are defined as the share of each country i in country c exports:

$$
\text{Share_ChinaW}_{jct} = \left(\frac{X_{c,t}^{i,j}}{\sum_{i=1}^{N(t)} X_{c,t}^{i,j}} \right) \left(\frac{M_{c,t}^{\text{China},j}}{\sum_{k=1}^{M(t)} M_{c,t}^{k,j}} \right).
$$

(24)

where $X_{c,t}^{i,j}$ ($M_{c,t}^{i,j}$) stands for exports (imports) from country c to country i, in sector j (in year t). In order to control for possible correlation between sectoral exchange rates and aggregate variables that are likely to influence employment growth we include additional controls for production costs such as Unit Labour Costs, $\text{ULC}_{c,t-1}$ for labour, and the long term real interest rate, $\text{IntRate}_{c,t-1}$ for capital costs. Aggregate real shocks are captured by the real Gross Domestic Product, $\text{GDP}_{c,t-1}$, measured in logs\(^10\). The composite error

\(^8\) The smoothing parameter was set equal to 6.25 following Ravn and Uhlig (2002).

\(^9\) According to our theoretical model, the sensitivity of employment to exchange rate movements increases to persistence of exchange rate shocks.

\(^10\) The data of both variables is from OECD.
term is defined as $u_{jct} = \theta_{jc} + \varepsilon_{jct}$, where θ_{jc} is a set of sector/country specific dummies. Finally, equation (23) also includes time dummies, λ_t, to account for common technology shocks that affect all sectors and countries.

Summary statistics of the variables used in our analysis are presented in Table 1 (variables description is shown in Table 9 in the Appendix). Over the 19 years under analysis, 1988-2006, within manufacturing sectors employment has decreased on average 1.2% per per year, with a median yearly decrease of 0.9%. The percentiles 25 and 75 of annual sectoral employment change are −3.9% and 2.0%. The dispersion across sectors is considerable, as the standard deviation is about 0.0857. These simple descriptive statistics indicate that there have been structural employment shifts. In half of the sectors/years observations across countries we see a depreciation of the exchange rate, with the mean change being 0.0007, although with considerable variation: $\Delta \log \text{ExRate}$ fluctuates between −0.0913 and 0.0947, with a standard deviation of 0.0244. The data also shows that industries became more open and that labour markets became more flexible. We also observe that China increased its export share in the countries included in our sample. On average, unit labour costs have decreased over time, the same being true for the interest rate. Finally, GDP has increased at an average rate of 2.4%.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logemp</td>
<td>5723</td>
<td>10.8519</td>
<td>1.6975</td>
<td>4.0604</td>
<td>14.7722</td>
</tr>
<tr>
<td>LogExRate</td>
<td>5723</td>
<td>-0.0336</td>
<td>0.0989</td>
<td>-0.4142</td>
<td>0.4043</td>
</tr>
<tr>
<td>Open</td>
<td>5723</td>
<td>0.4553</td>
<td>0.1898</td>
<td>0.0350</td>
<td>1.0000</td>
</tr>
<tr>
<td>EPL</td>
<td>5723</td>
<td>2.2065</td>
<td>0.9638</td>
<td>0.2100</td>
<td>4.1000</td>
</tr>
<tr>
<td>ShareChinaW</td>
<td>5723</td>
<td>0.0362</td>
<td>0.0447</td>
<td>0.0000</td>
<td>0.4146</td>
</tr>
<tr>
<td>ShareChina</td>
<td>5723</td>
<td>0.0427</td>
<td>0.0714</td>
<td>0.0000</td>
<td>0.7251</td>
</tr>
<tr>
<td>ULC</td>
<td>5723</td>
<td>1.0308</td>
<td>0.0625</td>
<td>0.8835</td>
<td>1.2300</td>
</tr>
<tr>
<td>LogGDP</td>
<td>5723</td>
<td>14.0023</td>
<td>2.1339</td>
<td>10.3809</td>
<td>20.5785</td>
</tr>
<tr>
<td>IntRate</td>
<td>5723</td>
<td>3.7687</td>
<td>1.9641</td>
<td>-3.5641</td>
<td>10.0059</td>
</tr>
</tbody>
</table>

$\Delta Logemp$	5723	-0.0120	0.0857	-1.4663	1.2054
$\Delta LogExRate$	5723	0.0007	0.0244	-0.0913	0.0947
$\Delta Open$	5673	0.0053	0.0272	-0.4091	0.3613
ΔEPL	5723	-0.0345	0.1535	-1.0200	0.5000
$\Delta ShareChinaW$	5723	0.0039	0.0083	-0.1347	0.1147
$\Delta ShareChina$	5723	0.0046	0.0193	-0.4770	0.4722
ΔULC	5723	-0.0054	0.0194	-0.0810	0.0586
$\Delta LogGDP$	5723	0.0242	0.0177	-0.0645	0.0691
$\Delta IntRate$	5723	-0.2238	1.2419	-7.3470	6.3962

Table 7 provides the list of 23 countries used in our analysis, as well as the number of observations within countries by technology level. Overall, we have 3295 observa-
tions for medium-low- and low-technology industries and 2428 observations for high- and medium-high-technology industries. For some countries the number of observations is relatively low, particularly for Slovakia, Poland, South Korea, Hungary, Czech Republic and Switzerland.

Table 2: Observations per country and technology level

<table>
<thead>
<tr>
<th>Country</th>
<th>Low-Tech</th>
<th>High-Tech</th>
<th>Country</th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria*</td>
<td>118</td>
<td>100</td>
<td>Austria</td>
<td>100</td>
<td>118</td>
</tr>
<tr>
<td>Belgium*</td>
<td>198</td>
<td>106</td>
<td>Belgium</td>
<td>106</td>
<td>198</td>
</tr>
<tr>
<td>Canada*</td>
<td>195</td>
<td>153</td>
<td>Canada</td>
<td>153</td>
<td>195</td>
</tr>
<tr>
<td>Switzerland</td>
<td>81</td>
<td>54</td>
<td>Switzerland</td>
<td>54</td>
<td>81</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>40</td>
<td>39</td>
<td>Czech Republic</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Germany</td>
<td>176</td>
<td>142</td>
<td>Germany</td>
<td>142</td>
<td>176</td>
</tr>
<tr>
<td>Denmark*</td>
<td>193</td>
<td>137</td>
<td>Denmark</td>
<td>137</td>
<td>193</td>
</tr>
<tr>
<td>Spain*</td>
<td>197</td>
<td>158</td>
<td>Spain</td>
<td>158</td>
<td>197</td>
</tr>
<tr>
<td>Finland*</td>
<td>202</td>
<td>159</td>
<td>Finland</td>
<td>159</td>
<td>202</td>
</tr>
<tr>
<td>France*</td>
<td>202</td>
<td>170</td>
<td>France</td>
<td>170</td>
<td>202</td>
</tr>
<tr>
<td>United Kingdom*</td>
<td>136</td>
<td>17</td>
<td>United Kingdom</td>
<td>17</td>
<td>136</td>
</tr>
<tr>
<td>Greece*</td>
<td>112</td>
<td>86</td>
<td>Greece</td>
<td>86</td>
<td>112</td>
</tr>
<tr>
<td>Total observations</td>
<td>3295</td>
<td>2428</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: OECD23 refers to all countries presented in table OECD17 refers to countries marked with *.

The next section presents the results derived from data for 20 manufacturing sectors, in 23 OECD countries, covering the period 1988-2006.

4.2 Main results

Table 3: Employment regressions

<table>
<thead>
<tr>
<th>Model</th>
<th>No-EPL</th>
<th>EPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>$\Delta \text{ExRate}_{t-1}$</td>
<td>-0.2316*</td>
<td>-0.2531**</td>
</tr>
<tr>
<td></td>
<td>(.1255)</td>
<td>(.1071)</td>
</tr>
<tr>
<td>$\Delta \text{ExRate} \times \text{Open}_{t-1}$</td>
<td>0.8851**</td>
<td>1.2085***</td>
</tr>
<tr>
<td></td>
<td>(.3999)</td>
<td>(.3981)</td>
</tr>
<tr>
<td>$\Delta \text{ExRate} \times \text{EPL}_{t-1}$</td>
<td>-0.0697</td>
<td>-0.0792</td>
</tr>
<tr>
<td></td>
<td>(.0428)</td>
<td>(.0986)</td>
</tr>
<tr>
<td>Open_{t-1}</td>
<td>0.2257***</td>
<td>0.0995*</td>
</tr>
<tr>
<td></td>
<td>(.0815)</td>
<td>(.0570)</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Model</th>
<th>No-Tech</th>
<th>Low-Tech</th>
<th>High-Tech</th>
<th>No-Tech</th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>EPL_{t-1}</td>
<td></td>
<td></td>
<td></td>
<td>-.0158**</td>
<td>- .0227**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.0043)</td>
<td>(.0091)</td>
<td></td>
</tr>
<tr>
<td>$\Delta \text{ShareChinaWeight}_{t-1}$</td>
<td>.0141</td>
<td>-.0626</td>
<td>.2435</td>
<td>-.0638</td>
<td>.2178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.2000)</td>
<td>(.1636)</td>
<td>(.4529)</td>
<td>(.1652)</td>
<td>(.4487)</td>
<td></td>
</tr>
<tr>
<td>$\Delta \text{ShareChina}_{t-1}$</td>
<td>-.1243**</td>
<td>-.0815</td>
<td>-.3486</td>
<td>-.0820*</td>
<td>-.3237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0606)</td>
<td>(.0498)</td>
<td>(.2276)</td>
<td>(.0498)</td>
<td>(.2242)</td>
<td></td>
</tr>
<tr>
<td>ΔULC_{t-1}</td>
<td>.0163</td>
<td>-.1323**</td>
<td>.2003</td>
<td>-.1211*</td>
<td>.2128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0879)</td>
<td>(.0626)</td>
<td>(.1786)</td>
<td>(.0627)</td>
<td>(.1750)</td>
<td></td>
</tr>
<tr>
<td>ΔGDP_{t-1}</td>
<td>.5959***</td>
<td>.7599***</td>
<td>.3965</td>
<td>.7800***</td>
<td>.4123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.1269)</td>
<td>(.0958)</td>
<td>(.2569)</td>
<td>(.0939)</td>
<td>(.2606)</td>
<td></td>
</tr>
<tr>
<td>$\Delta \text{InterestRate}_{t-1}$</td>
<td>-.0010</td>
<td>-.0013</td>
<td>-.0008</td>
<td>-.0012</td>
<td>-.0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0012)</td>
<td>(.0009)</td>
<td>(.0026)</td>
<td>(.0009)</td>
<td>(.0026)</td>
<td></td>
</tr>
</tbody>
</table>

Countries: 23 23 23 23 23
Observations: 5723 3295 2428 3295 2428
Adj. R^2: .0504 .1068 .0422 .1137 .0444

Notes: Significance levels: * : 10% ** : 5% *** : 1%. Robust standard errors in parenthesis. All regressions are estimated by fixed-effects at the sector/country level, and include time dummies. The dependent variable is $\Delta \log \text{Employment}_{jct}$.

Equation (23) is estimated by the within estimator, with sector/country fixed-effects; standard errors are robust and clustered within sectors/countries pairs in order to allow for intra-group correlation. Table 3 shows the results of our estimations. Our first estimates, column (1), do not distinguish for the level of technology and for labour market rigidities. The results indicate that the employment exchange rate elasticity increases with the degree of openness. The interaction coefficient is 0.8851 and statistically significant at the 5% level (its standard error is 0.3999). The employment exchange rate elasticity for closed sectors, evaluated at the 10th percentile of openness distribution, is not statistically different from zero (the elasticity is -0.032 with a joint significance $F-test p-value$ of 0.591). For open sectors, computed at the 90th percentile of openness distribution, we obtain an elasticity of 0.404 with a corresponding $p-value$ for the joint significance test of 0.028; a 1 percent exchange rate depreciation is associated with a 0.4 percent increase in employment. From our results we can also conclude that more open
sectors, on average, create more employment: a 1 point increase in the openness index is associated with an employment increase of 0.23%. Looking to the additional set of regressors, we observe that imports from China have a negative impact on employment growth, while, as expected, positive income variations generate further employment gains. Although not statistically significant, the unit labour costs (ULC) and the real interest rate have the expected impact on employment innovations. Throughout our estimations we are using a sample of 22 industries across 23 countries, as described above, which correspond to 5723 observations. These are divided between 3295 observations in the low technology economic activities, and 2428 observations in the high technology industries.

The estimates in columns (2) and (3) account for different levels of technology and columns (4) and (5) include the labour market rigidity variable. We used these results to quantify the effects of exchange rate movements on employment in different degrees of openness and labour market rigidities (Table 4). We evaluate the employment elasticity at the 90th and 10th percentile of openness, Open (+) and Open (-), respectively. For each degree of openness, and for the models that include employment protection legislation (\textit{EPL}), we further evaluate the elasticity from high to low levels of \textit{EPL}; \textit{i.e.}, at the 95th, 50th and 5th percentiles of \textit{EPL}.

For low technology and open sectors, Table 4, column (1), the employment exchange rate elasticity is positive and statistically significant; \textit{i.e.}, a depreciation induces employment creation: a 1 percent depreciation induces a 0.61\% employment change. However, for closed sectors, bottom half of column (1), although we obtain a positive elasticity, it is not statistically significant (the joint significance \textit{F-test}'s \textit{p-value} is about 0.7).11 Looking to the additional controls(column (3), Table 3), imports from China have a negative impact on OECD’s manufacturing employment, although marginally not statistically significant. The unit labour costs have a significant impact on employment: a 1 point increase implies a 13\% employment decrease. GDP growth has the expected positive and significant effect on employment, while the real interest rate does not interfere with employment movements, once we control for the other explanatory variables. These results show that exchange rate shocks play a role in the determination of employment changes. Furthermore, its effects are higher the higher the degree of openness.

From column (3), Table 3, we conclude that for high technology sectors the employment exchange rate does not vary with the degree of openness: the interaction term is estimated to be about 1.18, with a standard error of 0.76. Altogether, the employment exchange rate elasticity is not statistically significant (Table 4, column (3), top half), with an estimated magnitude of 0.37. Therefore, exchange rate movements seem to play

11The null hypothesis under analysis is \(H_0 : \beta_1 + \beta_4 \text{Open}^{95} = 0 \), where \(\text{Open}^{95} \) is the 95th openness percentile. The \textit{F} statistic is 9.72.
Table 4: Employment exchange rate elasticities

<table>
<thead>
<tr>
<th>Open (+)</th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>EPL (+)</td>
<td>0.6148*** (0.0020)</td>
<td>0.4259** (0.0499)</td>
</tr>
<tr>
<td>EPL (-)</td>
<td>0.6177*** (0.0016)</td>
<td>0.3999 (0.1089)</td>
</tr>
<tr>
<td>Open (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPL (+)</td>
<td>0.0193 (0.6981)</td>
<td>-0.0969 (0.3399)</td>
</tr>
<tr>
<td>EPL (-)</td>
<td>0.0949 (0.1030)</td>
<td>-0.0006 (0.9904)</td>
</tr>
</tbody>
</table>

Notes: p-values in parenthesis. Significance levels: * : 10% ** : 5% *** : 1%.

A crucial role in the determination of employment for low productivity and open industries, while it appears insignificant in the high productivity sectors and is in line with the one discussed in Alexandre et al. (2009a). The additional control variables shown in Table 3, column (3), are not statistically significant.

The inclusion of the EPL information in our regressions brings interesting results. First, for Low-Tech sectors, the effect of the exchange rate on employment is higher for more open industries that face a higher flexibility in the labour market (column (4), Table 3). The coefficient on $\Delta \text{ExRate}_{jc,t-1} \times EPL_{c,t-1}$ is marginally non significant, with a magnitude of -0.0697 and a standard error of 0.0428. We reinforce the result discussed above that exchange rate effects are enhanced for higher degrees of openness. On its own, openness is associated with employment creation (a 1 point increase in openness increases employment by 0.1%), while labour market rigidities (higher EPL) relates to negative employment variations (a 1 point increase in EPL implies a 1.6% employment decrease). The corresponding employment exchange rate elasticities reported in Table 4, column (2), reveal the following: for highly open sectors, top half of column (2), the elasticity is positive and significant and decreases with labour market rigidity. It goes from 0.62, for Low-Tech sectors with a degree of openness equal to its 90th percentile and an EPL evaluated at its 5th percentile, to 0.43 with an EPL evaluated at the 95th with the same degree of openness. For example, for Low-Tech, very open sectors, facing rigid labour markets, a 1% depreciation of the exchange rate is associated with an average

\[\frac{-0.023 \times (-0.0158)}{1} = 0.036\% \]

The annual average change in EPL is -0.023, with a standard deviation of 0.137. The induced employment change would be $-0.023 \times (-0.0158) \approx 0.036\%$.

12
employment increase of about 0.43%. Turning our attention to closed sectors we observe that in face of flexible labour markets the employment exchange rate elasticity is 0.0949, and marginally non-significant (the standard error is 0.1030). With the increase in the degree of rigidity the exchange rate effects on employment become clearly insignificant. The results for the additional covariates provide a consistent story: (i) competition from China affects negatively employment changes, (ii) an increase in the unit labour costs reduces employment, and (iii) income positive variations are associated with employment creation; a 1% increase in GDP created 0.78% more employment.

For High-Tech industries, column (5), Table 3, both openness and labour market rigidities do not play on the effect of exchange rate innovations on employment variations. At the same time, the employment exchange rate elasticity, Table 4, column (4), is not significant. An interesting result is the one where in very open High-Tech industries with flexible labour markets, the employment exchange rate elasticity is about 0.4, and marginally non-significant at the 10% level (the associated p-value is 0.1089). Such elasticity is still about 2/3 of the one obtained for Low-Tech industries. These results confirm the conclusion that exchange rate movements are particularly relevant for employment determination in low productivity sectors and these effects decrease monotonically with labour market rigidity. Also, openness has an important effect on employment variations; for example, a 1 point increase in the openness index implies a variation of about 0.34% in employment (Table 3, column 5), and labour market rigidities are associated with an employment reductions; a 1 point increase in EPL decreases employment by 2.3%. For High-Tech sectors the additional set of regressors does not seem to play a relevant role.

Finally, looking to the overall significance of the regressions presented in Table 3, we conclude that our model is more successful in explaining employment movements for Low-Tech industries. An adjusted R^2 of 11% for Low-Tech (columns 2 and 4) compares to 4% for High-Tech (columns 3 and 5). This conclusion is reinforced by the analysis of the loglikelihood.

4.3 Sensitivity analysis

In what follows we discuss two alternative specifications of equation (23). We extend the estimates presented in columns (4) and (5) of Table 3 by, first, replacing $Open_{jc,t-1}$ and $EPL_{c,t-1}$ by their first-differences counterparts, and, second, eliminating these variables from our specification, while keeping their interactions with the exchange rate. The estimates, and corresponding elasticities, are presented in Tables 5 and 6, respectively.

The new set of estimates indicates that there are no major changes in our results. Some of the estimates, and corresponding elasticities, become statistically significant,
reinforcing the results discussed in the previous section. By including both openness and EPL in lagged changes, instead of levels, we now observe that for High-Tech the exchange rate effects are also mediated by the degree of openness. This results is valid for both specifications, columns (2) and (4), Table 5. As before, exchange rate effects seem not to be determined by labour market rigidities for High-Tech industries. From column (2), we also conclude in favour of the relevant role of GDP on employment movements in the High-Tech economic activities. Although the estimate on this coefficient has always been positive, only under this particular specification of the model we obtain a statistically significant result. Comparing to the Low-Tech estimate, the estimated coefficient is about 2/3, implying a lower effect of GDP the High-Tech labour market. Excluding both openness and EPL on their own from the regression, column (4), GDP is again statistically insignificant, even though positive. One possible interpretation for these results is that the degree of openness might be correlated with income levels. This way, in Table 3, columns (3) and (5), most of the effect is captured by openness. By taking first-differences of openness, as well as of EPL, or by eliminating these two variables from the model, we let GDP show its main effect, even for High-Tech.

Table 5: Employment regressions

<table>
<thead>
<tr>
<th>Model</th>
<th>Low-Tech</th>
<th>High-Tech</th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔExRate_{t-1}</td>
<td>-.0788</td>
<td>-.3653</td>
<td>-.1248</td>
<td>-.2313</td>
</tr>
<tr>
<td></td>
<td>(.1203)</td>
<td>(.4154)</td>
<td>(.1247)</td>
<td>(.3687)</td>
</tr>
<tr>
<td>ΔExRate * Open_{t-1}</td>
<td>1.254***</td>
<td>1.6339*</td>
<td>1.3437***</td>
<td>1.4180*</td>
</tr>
<tr>
<td></td>
<td>(.3713)</td>
<td>(.8626)</td>
<td>(.3841)</td>
<td>(.7711)</td>
</tr>
<tr>
<td>ΔExRate * EPL_{t-1}</td>
<td>-.1068**</td>
<td>-.1365</td>
<td>-.0980**</td>
<td>-.1592</td>
</tr>
<tr>
<td></td>
<td>(.0423)</td>
<td>(.1012)</td>
<td>(.0428)</td>
<td>(.1017)</td>
</tr>
<tr>
<td>ΔOpen_{t-1}</td>
<td>-.0817</td>
<td>-.0328</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0638)</td>
<td>(.0868)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔEPL_{t-1}</td>
<td>-.0033</td>
<td>-.0043</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0065)</td>
<td>(.0199)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔShareChinaWeight_{t-1}</td>
<td>-.0913</td>
<td>.3057</td>
<td>-.0846</td>
<td>.2868</td>
</tr>
<tr>
<td></td>
<td>(.1599)</td>
<td>(.4552)</td>
<td>(.1645)</td>
<td>(.4568)</td>
</tr>
<tr>
<td>ΔShareChina_{t-1}</td>
<td>-.0745*</td>
<td>-.3050</td>
<td>-.0794*</td>
<td>-.2951</td>
</tr>
<tr>
<td></td>
<td>(.0438)</td>
<td>(.2268)</td>
<td>(.0467)</td>
<td>(.2271)</td>
</tr>
<tr>
<td>ΔULC_{t-1}</td>
<td>-.1632***</td>
<td>.0802</td>
<td>-.1582***</td>
<td>.1520</td>
</tr>
<tr>
<td></td>
<td>(.0627)</td>
<td>(.1525)</td>
<td>(.0602)</td>
<td>(.1821)</td>
</tr>
<tr>
<td>ΔGDP_{t-1}</td>
<td>.8199***</td>
<td>.5022*</td>
<td>.7653***</td>
<td>.3622</td>
</tr>
</tbody>
</table>

Continued on next page...
In Table 6, the regressions used in the estimation of elasticities under (1) use $\Delta Open$ and ΔEPL as explanatory variables - see columns (1) and (2) in Table 5 -, while the regressions used in the estimation of elasticities under (2) do not use openness and EPL on their own as explanatory variables - see columns (3) and (4) in Table 5. For very open Low-Tech industries with rigid labour markets the employment exchange rate elasticity is virtually the same presented in Table 4; i.e., 0.43. In this 2nd quadrant of Table 6 the elasticities increase with the exclusion of the testing variables, $Open$ and EPL. Moving to the 1st quadrant, very open High-Tech industries, we now get a clearer effect of rigidities on the employment exchange rate elasticities. Once we have at least a median level of flexibility, exchange rate movements do impact on employment changes, even for high productivity industries. We still confirm the previous results that the magnitude of such effect is higher for Low-Tech. For example, excluding Open and EPL variables, last column of Table 6, we conclude that a 1% depreciation leads to an increase of 0.67% in employment in High-Tech and 0.77% in Low-Tech, second column of Table 6.

There is one result that deserves an additional comment. As we can see in Table 6, columns (1) and (2) under Low-Tech, the employment exchange rate elasticity is negative for Low-Tech closed sectors in face of a rigid labour market. A possible explanation might be related with input costs – see, for example, Ekholm et al. (2008). However, we cannot test such explanation as we lack appropriate data.

From our sensitivity analysis we confirm the previous conclusion that exchange rate impacts on the labour market depends on the degree of labour market rigidity and the industry’s openness and productivity.
Table 6: Employment exchange rate elasticities

<table>
<thead>
<tr>
<th></th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Open(+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPL(+)</td>
<td>0.4273**</td>
<td>0.4970**</td>
</tr>
<tr>
<td></td>
<td>(0.0404)</td>
<td>(0.0220)</td>
</tr>
<tr>
<td></td>
<td>0.5747***</td>
<td>0.6323***</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0013)</td>
</tr>
<tr>
<td>EPL(-)</td>
<td>0.7211***</td>
<td>0.7666***</td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Open(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPL(+)</td>
<td>-0.1765*</td>
<td>-0.1650*</td>
</tr>
<tr>
<td></td>
<td>(0.0759)</td>
<td>(0.0972)</td>
</tr>
<tr>
<td></td>
<td>-0.0291</td>
<td>-0.0297</td>
</tr>
<tr>
<td></td>
<td>(0.6022)</td>
<td>(0.5905)</td>
</tr>
<tr>
<td>EPL(-)</td>
<td>0.1173**</td>
<td>0.1046*</td>
</tr>
<tr>
<td></td>
<td>(0.0385)</td>
<td>(0.0657)</td>
</tr>
</tbody>
</table>

Notes: p values in parenthesis. Significance levels: *: 10% **: 5% ***: 1%. The regressions used in the estimation of elasticities under (1) use $\Delta Open$ and ΔEPL as explanatory variables - see columns (1) and (2) in Table 5. The regressions used in the estimation of elasticities under (2) do not use $\Delta Open$ and ΔEPL as explanatory variables - see columns (3) and (4) in Table 5.

5 Conclusion

This paper studies the role of labour adjustment costs in the determination of the impact of exchange rates on employment. The model of exporting firm behaviour developed here suggests that higher labour adjustment costs reduce the influence of exchange rate movements on employment. This prediction receives support from our econometric analysis based on a sample of 23 OECD countries.

Although there are some aspects that require further research, we believe we can draw two conclusions from our work so far. First, the difference in labour market institutions is another variable that helps to understand the different impact of exchange rates on economic variables, such as employment (the focus of this paper), output and prices, across countries. Second, the fact that higher labour adjustment costs appear to reduce the elasticity of employment with respect to the exchange rate may have contradictory macroeconomic implications. On the one hand, it may smooth unemployment variations and, consequently, prevent some social costs associated with sharp increases in unemployment, and even social unrest. However, it may also hinder efficient reallocation of resources. An assessment of these benefits and costs is needed to help guide labour market reforms.
References

6 Appendix

Countries and Sectors

<table>
<thead>
<tr>
<th>Country</th>
<th>Low-Tech</th>
<th>High-Tech</th>
<th>Country</th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria*</td>
<td>118</td>
<td>100</td>
<td>Hungary</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>Belgium*</td>
<td>198</td>
<td>106</td>
<td>Italy*</td>
<td>202</td>
<td>170</td>
</tr>
<tr>
<td>Canada*</td>
<td>195</td>
<td>153</td>
<td>Japan*</td>
<td>192</td>
<td>159</td>
</tr>
<tr>
<td>Switzerland</td>
<td>81</td>
<td>54</td>
<td>South Korea*</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>40</td>
<td>39</td>
<td>Netherlands*</td>
<td>153</td>
<td>112</td>
</tr>
<tr>
<td>Germany</td>
<td>176</td>
<td>142</td>
<td>Norway*</td>
<td>185</td>
<td>147</td>
</tr>
<tr>
<td>Denmark*</td>
<td>193</td>
<td>137</td>
<td>Poland</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Spain*</td>
<td>197</td>
<td>158</td>
<td>Portugal*</td>
<td>151</td>
<td>110</td>
</tr>
<tr>
<td>Finland*</td>
<td>202</td>
<td>159</td>
<td>Slovakia</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>France*</td>
<td>202</td>
<td>170</td>
<td>Sweden*</td>
<td>202</td>
<td>168</td>
</tr>
<tr>
<td>United Kingdom*</td>
<td>136</td>
<td>17</td>
<td>United States*</td>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td>Greece*</td>
<td>112</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: OECD23 refers to all countries presented in table OECD17 refers to countries marked with *.

<table>
<thead>
<tr>
<th>Total observations</th>
<th>Low-Tech</th>
<th>High-Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3295</td>
<td>2428</td>
</tr>
</tbody>
</table>
Table 8: List of sectors used in the analysis

<table>
<thead>
<tr>
<th>ISIC Rev. 3</th>
<th>Description</th>
<th>Technology Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-16</td>
<td>Food products, beverages and tobacco</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>17-19</td>
<td>Textiles, textile products, leather and footwear</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>20</td>
<td>Wood and products of wood and cork</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>21-22</td>
<td>Pulp, paper, paper products, printing and publishing</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>23</td>
<td>Coke, refined petroleum products and nuclear fuel</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>24 less 2423</td>
<td>Chemicals excluding phamaceuticals</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>2423</td>
<td>Pharmaceuticals</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>25</td>
<td>Rubber and plastics products</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>26</td>
<td>Other non-metallic mineral products</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>271+2731</td>
<td>Iron and steel</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>272+2732</td>
<td>Non-ferrous metals</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>28</td>
<td>Fabricated metal products, except machinery and equip</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>29</td>
<td>Machinery and equipment, n.e.c.</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>30</td>
<td>Office, accounting and computing machinery</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>31</td>
<td>Electrical machinery and apparatus, n.e.c.</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>32</td>
<td>Radio, television and communication equipment</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>33</td>
<td>Medical, precision and optical instruments</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>34</td>
<td>Motor vehicles, trailers and semi-trailers</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>351</td>
<td>Building and repairing of ships and boats</td>
<td>Low and Medium Low Technology</td>
</tr>
<tr>
<td>352+359</td>
<td>Railroad equipment and transport equipment n.e.c.</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>353</td>
<td>Aircraft and spacecraft</td>
<td>High and Medium High Technology</td>
</tr>
<tr>
<td>36-37</td>
<td>Manufacturing n.e.c. and recycling</td>
<td>Low and Medium Low Technology</td>
</tr>
</tbody>
</table>

Variables

Table 9: Variables description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Number of employees (full and part-time)</td>
<td>OECD STAN: EMPN</td>
</tr>
<tr>
<td>$ExRate$</td>
<td>See next sub-section</td>
<td></td>
</tr>
<tr>
<td>$Open$</td>
<td>Exports plus imports over gross output plus exports and imports; all variables measured in national currency, current prices</td>
<td>OECD STAN: EXPO, IMPO and PROD</td>
</tr>
<tr>
<td>EPL</td>
<td>OECD’s employment protection legislation index</td>
<td>OECD Indicators on Employment Protection - annual time series data 1985-2008: Unweighted average of version 1 sub-indicators for regular contracts (EPR_{v1}) and temporary contracts (EPT_{v1})</td>
</tr>
<tr>
<td>$ShareChina_j$</td>
<td>Share of imports from China in sector j own country’s imports</td>
<td>OECD STAN Bilateral Trade Database</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share W</td>
<td>weighted average of the share of Chinese imports in OECD countries, where weights are defined as the share of each country i in c exports ($X_{c,j}^{i,t}$) ($M_{c,j}^{i,t}$) stands for exports (imports) from country c to country i, in sector j (in year t)): see note</td>
<td>OECD STAN Bilateral Trade Database</td>
</tr>
<tr>
<td>ULC</td>
<td>Unit labour costs: measure the average cost of labour per unit of output and are calculated as the ratio of total labour costs to real output</td>
<td>OECD STAN Database, variable: "ULC - total economy, annual". ULC was deflated using OECD’s consumer price indexes (2005=100)</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product, constant prices</td>
<td>OECD STAN Database</td>
</tr>
<tr>
<td>IntRate</td>
<td>Long-term interest rates, per cent per annum</td>
<td>OECD STAN Database, variable: "Interest Rates, Long-term government bond yields"</td>
</tr>
</tbody>
</table>

Note: $\text{Share}_W^{c,j,t} = \left(\frac{X_{c,j}^{i,t}}{\sum_{i=1}^{N(t)} X_{c,j}^{i,t}} \right) \left(\frac{M_{c,j}^{i,t}}{\sum_{k=1}^{N(t)} M_{c,j}^{k,t}} \right)$.

Exchange rate computation

$ExRate^{c,j,t-1}$ is the lagged real sectoral effective exchange rate computed as a trade-weighted rate where:

$$ExRate^{c,j,t} = \prod_{i=1}^{N(t)} (rer_{c,i,t}^{i,j})^{w_{c,i,t}^{i,j}}$$ (25)

and

$$rer_{c,i,t}^{i} = \frac{e_{i,t} \cdot p_{i,t}}{P_{c,t}}$$ (26)

is the bilateral real exchange rate between country c and country i, $e_{i,t}$ is the price of foreign currency i in terms of country c currency at time t, $P_{c,t}$ and $p_{i,t}$ are consumer price indexes for the country c economy and for economy i, $N(t)$ is the number of foreign currencies in the index at time t and $w_{c,i,t}^{i,j}$ is the weight of currency i in the index of country c at time t, with $\sum_{i} w_{c,i,t}^{i,j} = 1$. An increase in the value of this index corresponds to a real depreciation of the country c currency. The base of the index is the year 2000. The nominal exchange rates (national currency per US dollar at the end of the period) and consumer price indexes were collected from IMF International Financial Statistics database.
We computed exchange rate weights in order to include information that would allow us to take into account for sectoral third-party competition. We followed Turner and Van’t dack (1993) and defined the weight $w_{i, c, t}^{j,i}$ given to i’s country currency in the double-weighted effective index as

$$w_{i, c, t}^{j,i} = \left(\frac{M_{i, c, t}^{j}}{X_{i, c, t}^{j} + M_{i, c, t}^{j}} \right) w_{M, c, t}^{j,i} + \left(\frac{X_{i, c, t}^{j}}{X_{i, c, t}^{j} + M_{i, c, t}^{j}} \right) w_{X, c, t}^{j,i}$$

(27)

where $w_{X, c, t}^{j,i}$ is defined as

$$w_{X, c, t}^{j,i} = \left(\frac{X_{c, i}^{i,j}}{\sum_{i=1}^{N(t)} X_{c, i}^{i,j}} \right) \left(\frac{\gamma_{i, t}^{j}}{\sum_{h \neq i, c} X_{h, i}^{i,j}} \right) + \sum_{k \neq i} \left(\frac{X_{k, i}^{k,j}}{\sum_{k=1}^{N(t)} X_{k, i}^{k,j}} \right) \left(\frac{\gamma_{k, t}^{j}}{\sum_{h \neq k, c} X_{h, i}^{k,j}} \right)$$

(28)

In the formulas, $X_{c, i}^{i,j}$ ($M_{c, i}^{i,j}$) stands for exports (imports) from country c to country i, in sector j (in year t).

Data on trade is from OECD STAN Bilateral Trade Database (OECD, 2008).

Figures
Figure 7: Employment exchange rate elasticity: labour adjustment costs and openness

Figure 8: Employment exchange rate elasticity: labour adjustments costs and productivity
Figure 9: Employment exchange rate elasticity: labour adjustment costs and exchange rate persistence
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-03</td>
<td>Employment, exchange rates and labour market rigidity</td>
<td>Fernando Alexandre, Pedro Bação, João Cerejeira & Miguel Portela</td>
</tr>
<tr>
<td>2010-02</td>
<td>Slip Sliding Away: Further Union Decline in Germany and Britain</td>
<td>John T. Addison, Alex Bryson, Paulino Teixeira & André Pahnke</td>
</tr>
<tr>
<td>2010-01</td>
<td>The Demand for Excess Reserves in the Euro Area and the Impact of the Current Credit Crisis</td>
<td>Fátima Teresa Sol Murta & Ana Margarida Garcia</td>
</tr>
<tr>
<td>2009-16</td>
<td>The performance of the European Stock Markets: a time-varying Sharpe ratio approach</td>
<td>José A. Soares da Fonseca</td>
</tr>
<tr>
<td>2009-15</td>
<td>Exchange Rate Mean Reversion within a Target Zone: Evidence from a Country on the Periphery of the ERM</td>
<td>António Portugal Duarte, João Sousa Andrade & Adelaide Duarte</td>
</tr>
<tr>
<td>2009-10</td>
<td>A Política Monetária do BCE. Uma estratégia original para a estabilidade nominal</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>2009-08</td>
<td>Employment and exchange rates: the role of openness and technology</td>
<td>Fernando Alexandre, Pedro Bação, João Cerejeira & Miguel Portela</td>
</tr>
<tr>
<td>2009-07</td>
<td>Channels of transmission of inequality to growth: A survey of the theory and evidence from a Portuguese perspective</td>
<td>Adelaide Duarte & Marta Simões</td>
</tr>
<tr>
<td>2009-06</td>
<td>No Deep Pockets: Some stylized results on firms’ financial constraints</td>
<td>Filipe Silva & Carlos Carreira</td>
</tr>
<tr>
<td>2009-05</td>
<td>Aggregate and sector-specific exchange rate indexes for the Portuguese economy</td>
<td>Fernando Alexandre, Pedro Bação, João Cerejeira & Miguel Portela</td>
</tr>
<tr>
<td>2009-04</td>
<td>Rent Seeking at Plant Level: An Application of the Card-De La Rica Tenure Model to Workers in German Works Councils</td>
<td>John T. Addison, Paulino Teixeira & Thomas Zwick</td>
</tr>
<tr>
<td>2009-03</td>
<td>Unobserved Worker Ability, Firm Heterogeneity, and the Returns to Schooling and Training</td>
<td>Ana Sofia Lopes & Paulino Teixeira</td>
</tr>
<tr>
<td>2009-02</td>
<td>Worker Directors: A German Product that Didn’t Export?</td>
<td>John T. Addison & Claus Schnabel</td>
</tr>
<tr>
<td>2009-01</td>
<td>Fiscal and Monetary Policies in a Keynesian Stock-flow Consistent Model</td>
<td>Edwin Le Heron</td>
</tr>
<tr>
<td>2008-08</td>
<td>Uniform Price Market and Behaviour Pattern: What does the Iberian Electricity Market Point Out</td>
<td>Vítor Marques, Isabel Soares & Adelino Fortunato</td>
</tr>
</tbody>
</table>
2008-07 The partial adjustment factors of FTSE 100 stock index and stock index futures: The informational impact of electronic trading systems
- Helder M. C. V. Sebastião

2008-06 Water Losses and Hydrographical Regions Influence on the Cost Structure of the Portuguese Water Industry
- Rita Martins, Fernando Coelho & Adelino Fortunato

2008-05 The Shadow of Death: Analysing the Pre-Exit Productivity of Portuguese Manufacturing Firms
- Carlos Carreira & Paulino Teixeira

2008-04 A Note on the Determinants and Consequences of Outsourcing Using German Data
- John T. Addison, Lutz Bellmann, André Pahnke & Paulino Teixeira

2008-03 Exchange Rate and Interest Rate Volatility in a Target Zone: The Portuguese Case
- António Portugal Duarte, João Sousa Andrade & Adelaide Duarte

2008-02 Taylor-type rules versus optimal policy in a Markov-switching economy
- Fernando Alexandre, Pedro Bação & Vasco Gabriel

2008-01 Entry and exit as a source of aggregate productivity growth in two alternative technological regimes
- Carlos Carreira & Paulino Teixeira

2007-09 Optimal monetary policy with a regime-switching exchange rate in a forward-looking model
- Fernando Alexandre, Pedro Bação & John Driffill

2007-08 Estrutura económica, intensidade energética e emissões de CO2: Uma abordagem Input-Output
- Luís Cruz & Eduardo Barata

2007-07 The Stability and Growth Pact, Fiscal Policy Institutions, and Stabilization in Europe
- Carlos Fonseca Marinheiro

2007-06 The Consumption-Wealth Ratio Under Asymmetric Adjustment
- Vasco J. Gabriel, Fernando Alexandre & Pedro Bação

2007-05 European Integration and External Sustainability of the European Union An application of the thesis of Feldstein-Horioka
- João Sousa Andrade

2007-04 Uma Aplicação da Lei de Okun em Portugal
- João Sousa Andrade

2007-03 Education and growth: an industry-level analysis of the Portuguese manufacturing sector
- Marta Simões & Adelaide Duarte

2007-02 Levels of education, growth and policy complementarities
- Marta Simões & Adelaide Duarte

2007-01 Internal and External Restructuring over the Cycle: A Firm-Based Analysis of Gross Flows and Productivity Growth in Portugal
- Carlos Carreira & Paulino Teixeira

2006-09 Cost Structure of the Portuguese Water Industry: a Cubic Cost Function Application
- Rita Martins, Adelino Fortunato & Fernando Coelho

2006-08 The Impact of Works Councils on Wages
- John T. Addison, Paulino Teixeira & Thomas Zwick

2006-07 Ricardian Equivalence, Twin Deficits, and the Feldstein-Horioka puzzle in Egypt
- Carlos Fonseca Marinheiro

2006-06 L’intégration des marchés financiers
- José Soares da Fonseca

2006-05 The Integration of European Stock Markets and Market Timing
- José Soares da Fonseca

- João Sousa Andrade
2006-03 Works Councils, Labor Productivity and Plant Heterogeneity: First Evidence from Quantile Regressions
- Joachim Wagner, Thorsten Schank, Claus Schnabel & John T. Addison

2006-02 Does the Quality of Industrial Relations Matter for the Macroeconomy? A Cross-Country Analysis Using Strikes Data
- John T. Addison & Paulino Teixeira

2006-01 Monte Carlo Estimation of Project Volatility for Real Options Analysis
- Pedro Manuel Cortesão Godinho

2005-17 On the Stability of the Wealth Effect
- Fernando Alexandre, Pedro Baçao & Vasco J. Gabriel

2005-16 Building Blocks in the Economics of Mandates
- John T. Addison, C. R. Barrett & W. S. Siebert

2005-15 Horizontal Differentiation and the survival of Train and Coach modes in medium range passenger transport, a welfare analysis comprising economies of scope and scale
- Adelino Fortunato & Daniel Murta

2005-14 ‘Atypical Work’ and Compensation
- John T. Addison & Christopher J. Surfield

2005-13 The Demand for Labor: An Analysis Using Matched Employer-Employee Data from the German LIAB. Will the High Unskilled Worker Own-Wage Elasticity Please Stand Up?
- John T. Addison, Lutz Bellmann, Thorsten Schank & Paulino Teixeira

2005-12 Works Councils in the Production Process
- John T. Addison, Thorsten Schank, Claus Schnabel & Joachim Wagner

- J. Q. Smith & António A. F. Santos

2005-10 Firm Growth and Persistence of Chance: Evidence from Portuguese Microdata
- Blandina Oliveira & Adelino Fortunato

2005-09 Residential water demand under block rates – a Portuguese case study
- Rita Martins & Adelino Fortunato

2005-08 Politico-Economic Causes of Labor Regulation in the United States: Alliances and Raising Rivals’ Costs (and Sometimes Lowering One’s Own)
- John T. Addison

2005-07 Firm Growth and Liquidity Constraints: A Dynamic Analysis
- Blandina Oliveira & Adelino Fortunato

2005-06 The Effect of Works Councils on Employment Change
- John T. Addison & Paulino Teixeira

2005-05 Le Rôle de la Consommation Publique dans la Croissance: le cas de l’Union Européenne
- João Sousa Andrade, Maria Adelaide Silva Duarte & Claude Berthomieu

2005-04 The Dynamics of the Growth of Firms: Evidence from the Services Sector
- Blandina Oliveira & Adelino Fortunato

- John T. Addison

2005-02 Has the Stability and Growth Pact stabilised? Evidence from a panel of 12 European countries and some implications for the reform of the Pact
- Carlos Fonseca Marinheiro

2005-01 Sustainability of Portuguese Fiscal Policy in Historical Perspective
- Carlos Fonseca Marinheiro
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-03</td>
<td>Human capital, mechanisms of technological diffusion and the role of technological shocks in the speed of diffusion. Evidence from a panel of Mediterranean countries</td>
<td>Maria Adelaide Duarte & Marta Simões</td>
</tr>
<tr>
<td>2003-05</td>
<td>Causas do Atraso na Estabilização da Inflação: Abordagem Teórica e Empírica</td>
<td>Vítor Castro</td>
</tr>
<tr>
<td>2003-04</td>
<td>The Effects of Households' and Firms' Borrowing Constraints on Economic Growth</td>
<td>Maria da Conceição Costa Pereira</td>
</tr>
<tr>
<td>2003-02</td>
<td>Output Smoothing in EMU and OECD: Can We Forgo Government Contribution? A risk sharing approach</td>
<td>Carlos Fonseca Marinheiro</td>
</tr>
<tr>
<td>2003-01</td>
<td>Um modelo VAR para uma Avaliação Macroeconómica de Efeitos da Integração Europeia da Economia Portuguesa</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>2002-08</td>
<td>Discrimination des facteurs potentiels de croissance et type de convergence de l’économie portugaise dans l’UE à travers la spécification de la fonction de production macro-économique. Une étude appliquée de données de panel et de séries temporelles</td>
<td>Marta Simões & Maria Adelaide Duarte</td>
</tr>
<tr>
<td>2002-07</td>
<td>Privatisation in Portugal: employee owners or just happy employees?</td>
<td>Luís Moura Ramos & Rita Martins</td>
</tr>
<tr>
<td>2002-06</td>
<td>The Portuguese Money Market: An analysis of the daily session</td>
<td>Fátima Teresa Sol Murta</td>
</tr>
<tr>
<td>2002-05</td>
<td>As teorias de ciclo políticos e o caso português</td>
<td>Rodrigo Martins</td>
</tr>
<tr>
<td>2002-04</td>
<td>Fundos de acções internacionais: uma avaliação de desempenho</td>
<td>Nuno M. Silva</td>
</tr>
<tr>
<td>2002-03</td>
<td>The consistency of optimal policy rules in stochastic rational expectations models</td>
<td>David Backus & John Driffill</td>
</tr>
<tr>
<td>2002-02</td>
<td>The term structure of the spreads between Portuguese and German interest rates during stage II of EMU</td>
<td>José Soares da Fonseca</td>
</tr>
<tr>
<td>2002-01</td>
<td>O processo desinflacionista português: análise de alguns custos e benefícios</td>
<td>António Portugal Duarte</td>
</tr>
</tbody>
</table>
2001-14 Equity prices and monetary policy: an overview with an exploratory model
- Fernando Alexandre & Pedro Bação

2001-13 A convergência das taxas de juro portuguesas para os níveis europeus durante a segunda metade da década de noventa
- José Soares da Fonseca

- Adelaide Duarte & Marta Simões

2001-11 Ricardian Equivalence: An Empirical Application to the Portuguese Economy
- Carlos Fonseca Marinheiro

2001-10 A Especificação da Função de Produção Macro-Económica em Estudos de Crescimento Económico.
- Maria Adelaide Duarte e Marta Simões

2001-09 Eficácia da Análise Técnica no Mercado Accionista Português
- Nuno Silva

2001-08 The Risk Premiums in the Portuguese Treasury Bills Interest Rates: Estimation by a cointegration method
- José Soares da Fonseca

2001-07 Principais factores de crescimento da economia portuguesa no espaço europeu
- Maria Adelaide Duarte e Marta Simões

2001-06 Inflation Targeting and Exchange Rate Co-ordination
- Fernando Alexandre, John Driffill e Fabio Spagnolo

2001-05 Labour Market Transition in Portugal, Spain, and Poland: A Comparative Perspective
- Paulino Teixeira

2001-04 Paridade do Poder de Compra e das Taxas de Juro: Um estudo aplicado a três países da UEM
- António Portugal Duarte

2001-03 Technology, Employment and Wages
- John T. Addison & Paulino Teixeira

2001-02 Human capital investment through education and economic growth. A panel data analysis based on a group of Latin American countries
- Maria Adelaide Duarte & Marta Simões

- José Soares da Fonseca

2000-08 Identificação de Vectores de Cointegração: Análise de Alguns Exemplos
- Pedro Miguel Avelino Bação

2000-07 Imunização e M-quadrado: Que relação?
- Jorge Cunha

2000-06 Eficiência Informacional nos Futuros Lisbor 3M
- Nuno M. Silva

2000-05 Estimation of Default Probabilities Using Incomplete Contracts Data
- J. Santos Silva & J. Murteira
2000-04 Un Essaie d’Application de la Théorie Quantitative de la Monnaie à l’économie portugaise, 1854-1998
- João Sousa Andrade

2000-03 Le Taux de Chômage Naturel comme un Indicateur de Politique Economique? Une application à l’économie portugaise
- Adelaide Duarte & João Sousa Andrade

2000-02 La Convergence Réelle Selon la Théorie de la Croissance: Quelles Explications pour l’Union Européenne?
- Marta Cristina Nunes Simões

2000-01 Política de Estabilização e Independência dos Bancos Centrais
- João Sousa Andrade

1999-09 Nota sobre a Estimação de Vectores de Cointegração com os Programas CATS in RATS, PCFIML e EVIEWS
- Pedro Miguel Avelino Bação

1999-08 A Abertura do Mercado de Telecomunicações Celulares ao Terceiro Operador: Uma Decisão Racional?
- Carlos Carreira

1999-07 Is Portugal Really so Arteriosclerotic? Results from a Cross-Country Analysis of Labour Adjustment
- John T. Addison & Paulino Teixeira

1999-06 The Effect of Dismissals Protection on Employment: More on a Vexed Theme
- John T. Addison, Paulino Teixeira e Jean-Luc Grosso

1999-05 A Cobertura Estática e Dinâmica através do Contrato de Futuros PSI-20. Estimação das Rácios e Eficácia Ex Post e Ex Ante
- Helder Miguel C. V. Sebastião

1999-04 Mobilização de Poupança, Financiamento e Internacionalização de Carteiras
- João Sousa Andrade

1999-03 Natural Resources and Environment
- Adelaide Duarte

1999-02 L’Analyse Positive de la Politique Monétaire
- Chistian Aubin

1999-01 Economias de Escala e de Gama nos Hospitais Públicos Portugueses: Uma Aplicação da Função de Custo Variável Translog
- Carlos Carreira

1998-11 Equilíbrio Monetário no Longo e Curto Prazos - Uma Aplicação à Economia Portuguesa
- João Sousa Andrade

1998-10 Algumas Observações Sobre o Método da Economia
- João Sousa Andrade

1998-09 Mudança Tecnológica na Indústria Transformadora: Que Tipo de Viés Afinal?
- Paulino Teixeira

1998-08 Portfolio Insurance and Bond Management in a Vasicek’s Term Structure of Interest Rates
- José Alberto Soares da Fonseca

1998-07 Financial Innovation and Money Demand in Portugal: A Preliminary Study
- Pedro Miguel Avelino Bação
The Stability Pact and Portuguese Fiscal Policy: the Application of a VAR Model
- Carlos Fonseca Marinheiro

A Moeda Única e o Processo de Difusão da Base Monetária
- José Alberto Soares da Fonseca

La Structure par Termes et la Volatilité des Taux d’intérêt LISBOR
- José Alberto Soares da Fonseca

Regras de Comportamento e Reformas Monetárias no Novo SMI
- João Sousa Andrade

Um Estudo da Flexibilidade dos Salários: o Caso Espanhol e Português
- Adelaide Duarte e João Sousa Andrade

Moeda Única e Internacionalização: Apresentação do Tema
- João Sousa Andrade

Inovação e Aplicações Financeiras em Portugal
- Pedro Miguel Avelino Bação

Estudo do Efeito Liquidez Aplicado à Economia Portuguesa
- João Sousa Andrade

An Introduction to Conditional Expectations and Stationarity
- Rui Manuel de Almeida

Definição de Moeda e Efeito Berlusconi
- João Sousa Andrade

A Estimação do Risco na Escolha dos Portafólios: Uma Visão Selectiva
- António Alberto Ferreira dos Santos

A Previsão Não Paramétrica de Taxas de Rentabilidade
- Pedro Manuel Cortesão Godinho

Propriedades Assimptóticas de Densidades
- Rui Manuel de Almeida

Co-Integration and VAR Analysis of the Term Structure of Interest Rates: an empirical study of the Portuguese money and bond markets
- João Sousa Andrade & José Soares da Fonseca

Repartição e Capitalização. Duas Modalidades Complementares de Financiamento das Reformas
- Maria Clara Murteira

A Crise e o Ressurgimento do Sistema Monetário Europeu
- Luís Manuel de Aguiar Dias

Housing Shortage and Housing Investment in Portugal a Preliminary View
- Vítor Neves

Housing, Mortgage Finance and the British Economy
- Kenneth Gibb & Nile Istephan

The Social Policy of The European Community, Reporting Information to Employees, a U.K. perspective: Historical Analysis and Prognosis
- Ken Shackleton

O Teorema da Equivalência Ricardiana: aplicação à economia portuguesa
- Carlos Fonseca Marinheiro
1996-03 O Teorema da Equivalência Ricardiana: discussão teórica
- Carlos Fonseca Marinheiro

1996-02 As taxas de juro no MMI e a Restrição das Reservas Obrigatórias dos Bancos
- Fátima Assunção Sol e José Alberto Soares da Fonseca

1996-01 Uma Análise de Curto Prazo do Consumo, do Produto e dos Salários
- João Sousa Andrade